Using Transient Shear Rheology to Determine Material Parameters in Fiber Suspension Theory

نویسندگان

  • Aaron P. R. Eberle
  • Donald G. Baird
  • Peter Wapperom
  • Gregorio M. Vélez-García
چکیده

Fiber suspension theory model parameters for use in the simulation of fiber orientation in complex flows are, in general, either calculated from theory or fit to experimentally determined fiber orientation generated in processing flows. Transient stress growth measurements in startup of shear flow and flow reversal in the shear rate range, γ = 1 to 10 s, were performed on a commercially available short glass fiber-filled polybutylene terephthalate using a novel “donut-shaped” sample in a cone-and-plate geometry. Predictions using the Folgar-Tucker model for fiber orientation, with a “slip” factor, combined with the Lipscomb model for stress, were fit to the transient stresses at the startup of shear flow. Model parameters determined by fitting at γ = 6 s allowed for reasonable predictions of the transient stresses in flow reversal experiments at all the shear rates tested. Furthermore, fiber orientation model parameters determined by fitting

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the Rheology and Orientation Distribution of Short Glass Fibers Suspended in Polymeric Fluids: Simple Shear Flow

In this paper we present a constitutive relation for predicting the rheology of short glass fibers suspended in a polymeric matrix. The performance of the model is assessed through its ability to predict the steady-state and transient shear rheology as well as qualitatively predict the fiber orientation distribution of a short glass fiber (0.5 mm, L/D < 30) filled polypropylene. In this approac...

متن کامل

Modeling the Transient Rheology of a Polypropylene Melt Reinforced with Long and Short Glass Fibers

In this paper we investigate the transient shear rheology of a polypropylene containing long fibers (2.75 to 11 mm, L/D > 150) and short fibers (1 mm, L/D < 50). The objectives of this work are to determine the relationship between stress growth and relaxation behavior of fiber orientation and determine the feasibility of extending Doi’s theory for the rheology of rod-like molecules to fiber re...

متن کامل

Free Vibration and Transient Response of Heterogeneous Piezoelectric Sandwich Annular Plate Using Third-Order Shear Deformation Assumption

Based on the third-order shear deformation theory (TSDT), this paper numerically investigates the natural frequencies and time response of three-layered annular plate with functionally graded materials (FGMs) sheet core and piezoelectric face sheets, under initial external electric voltage. The impressive material specifications of FGM core are assumed to vary continuously across the plate thic...

متن کامل

The Effect of Fiber Breakage on Transient Stress Distribution in a Single-Lap Joint Composite Material

In the present study, the transient stress distribution caused by a break in the fibers of an adhesive bonding is investigated. Transient stress is a dynamic response of the system to any discontinuity in the fibers from detachment time till their equilibrium state (or steady state). To derive the governing dynamic equilibrium equations shear lag model is used. Here, it is assumed that the tens...

متن کامل

Slip, yield, and bands in colloidal crystals under oscillatory shear.

We study dense colloidal crystals under oscillatory shear using a confocal microscope. At large strains the crystals yield and the suspensions form shear bands. The pure harmonic response exhibited by the suspension rules out the applicability of nonlinear rheology models typically used to describe shear banding in other types of complex fluids. Instead, we show that a model based on the coexis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009